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What is a Model? 

 All production cost models are mathematical models that 
simulate the fundamental elements of a power system. 

 You cannot model with perfect precision and accuracy 
 The only 100% accurate model is called: “The Real World” 
 But it’s a very poor predictive model! 

 Need to make simplifying assumptions: 
 Tradeoffs must be made! 

 Runtime vs. accuracy 
 Level of detail required 

 Outputs 
 Inputs 

 Availability of reliable data 
 The answers to the tradeoff questions vary depending on the use of 

the model 
 Almost all the inputs are forecasted information 
 

 



©2013 Ventyx, An ABB Company   4 

What is a Model? 

 Forecasts: 
 Forecasting is the process of making statements about future 

events whose actual outcomes can not be observed (yet). 
 Forecast accuracy is always a concern and key forecast variables 

should be bounded with statistically relevant sensitivities. 
 Forecasts are time dependent 

 Actual market conditions change and forecasts should be updated 
to reflect those changes. 

 Since almost everything input into the model is a forecast… 
 Accept that forecast accuracy is a concern 
 Compensate for expected forecast error with scenarios, 

sensitivities, and stochastics 
 Modeling is partly art and partly science 
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Detail vs. Runtime Considerations 

 Broadly speaking; Runtime is a function of detail 
 The level of detail in simulation models include:  

 Planning horizon, i.e., 15 year, 20 year, 30 year, etc. 
 Model footprint, i.e., stand alone utility, ISO, region, etc. 
 Number and complexity modeling elements 

 Breakout of customer loads and load centers 
 Number of resources, transmission areas, companies, & markets 

 Level of hourly/sub-hourly detail 
 Typical week, chronological, load aggregation 

 Modeling algorithms 
 LP/MIPS vs. DP 
 Deterministic vs. Stochastic 
 Security constrained economic dispatch 
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What Makes a Good Model? 

 Model Detail is a function of Use 
 Short term commitment and dispatch models require the most 

detail 
 Long term resource optimization models require less detail 
 Near term budgetary models’ requirements fall somewhere in 

the middle 
 No one model can do it all well, nor should it be expected to! 
 A good model will estimate the direction and magnitude of  

differences from one set of assumptions to another 
 



©2013 Ventyx, An ABB Company   7 

How to use the model correctly… 

 The “correct” model is a balance between of the underlying 
purpose and adequate detail versus runtime. 
 Short Term models for commitment and dispatch decisions 

require volumes of operational data and constraints and are 
typically run hourly or sub-hourly 

 Long Term optimization models require reasonable runtimes, 
requiring fewer operational data and constraints and typically 
run with aggregated time intervals 

 Special purpose models such as LMP models, require all of the 
same elements of Short Term models plus the volume of detail 
associated with transmission modeling 

 Scenarios, sensitivities, and stochastic risk analysis have their 
places both at the less detailed modeling level and the more 
detailed level 
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Production Cost Modeling 

 The key to production cost commitment and dispatch 
requirement  is a proper generation response to market 
prices. 
 All production cost models simulate the day ahead market. 
 Dispatch to price can be achieved through: 

 Detailed modeling of a market’s footprint*, or 
 A hub and spoke representation 

 
 
 
 
 

 *Even detailed modeling of the MISO market requires a hub and  
         spoke representation of New York/New England and Florida. 
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 Unit Dispatch Methods: 
 Deterministic 
 Direct Enumeration 
 Probabilistic 
 Monte Carlo 
 Security Constrained Commitment and Dispatch 

 

Production Cost Modeling 
INTRODUCTION 
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Deterministic Dispatch 

 
 
 
 

 
     

 

Unit A 

Unit B 

Unit C 

Unit D 

Unit E 
Unit F 
Unit G 
Unit H 

Unit K 
  Unit J 
   Unit I 

 Units Derated for Forced 
Outage Rates 

 Derated Units “stacked” 
against a Load Duration 
Curve (LDC)  

 Unit energies calculated 
by linear interpolation 
against the LDC 

 Pros:  Speed 
 Cons:  Dispatch accuracy 
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Random Forced Outages must be Modeled 

 Probabilistic production cost modeling is a necessary 
complexity 
 Captures the uncertainty of unit availabilities 
 Better represents expected generation from peaking resources 

 Three methods of doing this: 
 Direct Enumeration Method (Calebrese) 
 Probabilistic Simulation – Convolution Method 
 Monte Carlo Method 

 Let’s look at an example using all three of these methods… 
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Emergency Energy 
Cost $100 / MWh 

Demand:  640 MW 

LOAD 

640 
MW 

0 
0 Time 1 

UNIT A 

UNIT B 

UNIT C 

Capacity 400 MW 
F.O.R 20%  
Cost $10 / MWh 

Capacity 350 MW 
F.O.R 15%  
Cost $25 / MWh 

Capacity 75 MW 
F.O.R 5%  
Cost $60 / MWh 

Unit Uncertainty Example  
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Modeling Forced Outage Rates and  
Calculating Production Cost 

 
 Direct Enumeration Method (Calebrese) 

 
 Probabilistic Simulation – Convolution Method 

 
 Monte Carlo Method 
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Let’s Look at 
the Probability 
and Outcome of 
Each State for 
the Load of 640 
MW in 1 Hour  

N    Y   Y   .2 x .85 x .95 = .1615 

Direct Enumeration Method (Calebrese) 

STATE 
PROBABILITY 

OUTCOME 

GENERATION (MWH) 
$ 

B 

Y 

Y 

N 

N 

Y 

N 

Y 

N 

C 

Y 

N 

Y 

N 

Y 

Y 

N 

N 

 

0.646 

.0340 

.1140 

.0060 

.1615 

.0285 

.0085 

.0015 

1.0000 

UNIT A 

400 

400 

400 

400 

0 

0 

0 

0 

320 

UNIT B 

240 

240 

0 

0 

350 

0 

350 

0 

222.7 

UNIT C 

0 

0 

75 

0 

75 

75 

0 

0 

22.8 

EMERGENCY 

0 

0 

165 

240 

215 

565 

290 

640 

74.5 

 

10,000 

10,000 

25,000 

28,000 

34,750 

61,000 

37,750 

64,000 

17,585 EXPECTED RESULT: 

A 

Y 

Y 

Y 

Y 

N 

N 

N 

N 
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Direct Enumeration Method (Calebrese) 

 Direct Enumeration Method (Calebrese) 
 Calebrese’s method gives correct answer ... but: 
 3 units, each with two capacity states, yielded 23 = 8 distinct cases 
 50 units, each with 5 partial availability states would require 

enumeration of 550 or 8.8 x 1034 cases 
 

 At 1000 cases per second, it would take 2.8 x 1022 
years to evaluate! 
 

 Even for small systems enumeration is infeasible 
since load changes hourly and sub-hourly !!! 
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Modeling Forced Outage Rates 

 
 Direct Enumeration Method (Calebrese) 

 
 Probabilistic Simulation: Convolution Method 

 
 Monte Carlo Method 
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Probabilistic Simulation: Convolution Method 

 Method of combining probability distributions of 
unit forced outages 

 
 Procedure uses a remaining equivalent load 

distribution function 
 

 Produces results that are mathematically 
equivalent to direct enumeration 
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Probability Distribution Functions 

LOAD PROBABILITY 
DISTRIBUTION FUNCTION 

UNIT CAPACITY AVAILABILITY 
PROBABILITY FUNCTION 

EXPECTED LOAD DISTRIBUTION 
FUNCTION AFTER DISPATCH OF 

CAPACITY 

X = 

MW 

PROBABILITY 

X 

80 

20 

0 MAX 
MW 

DISCRETE AVAILABILITY (% ) 

= 
MW 

PROBABILITY 

Probabilistic Simulation: Convolution Method 
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Probabilistic Simulation: Convolution Method 

UNIT A 
400 MW DISPATCH OF UNIT A 

LOAD 
BEFORE UNIT 

A IS 
DISPATCHED 

640 

1.0 

MW 

640 

1.0 

400 

UNIT A 

UNIT A GENERATION 
400 (1.0) X .80 = 320 MWH 

PROBABILITY 

80%  
available 

20%  
unavailable 

240 

1.0 

240 

1.0 

240 

1.0 

640 

REMAINING 
LOAD 

.2 

+ 

640 
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Probabilistic Simulation: Convolution Method 

DISPATCH OF UNIT B 

640 

1.0 

MW 

UNIT B GENERATION 
[ 350* (0.20 ) + 240*(0.80 )] X 0.85 

PROBABILITY 

85%  
available 

15%  
unavailable 

1.0 

290 

1.0 

240 240 

1.0 

640 640 REMAINING 
LOAD 

UNIT B 
350 MW 

.2 

.2 

+ 350 

UNIT B 

640 

1.0 

240 

.2 

290 

REMAINING LOAD BEFORE 
UNIT B IS DISPATCHED 

240 

.2 0.32 
0.2 

0.03 
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UNIT C DISPATCH OF UNIT C 

UNIT C GENERATION 
[75 (.32)] X .95 = 22.8 MWH 

95%  
available 

5%  
unavailable 

+ 

PROBABILITY 

REMAINING LOAD BEFORE 
UNIT C IS DISPATCHED 

640 

.32 

240 
290 

.2 .03 

75 
UNIT C 

565 

.32 

165 
215 

.2 .03 .32 

240 

640 

.2 

290 

.03 

290 

.2060 

640 
REMAINING 

LOAD 

565 

240 
165 
215 

.0015 .03 .0445 .3200 
.0385 

.32 

240 

640 

.2 

290 

.03 

Probabilistic Simulation: Convolution Method 
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Probabilistic Simulation: Convolution Method 

 Expected Generation 
  Unit A = 320 MWH 
  Unit B = 222.7 MWH 
  Unit C = 22.8 MWH 
  Emergency = 74.5 MWH 

 
 Expected Production Cost 

  (320 x 10) + (222.7 x 25) + (22.8 x 60) + (74.5 x 100) = $17,585.50 
 

 It can be shown that convolution is mathematically equivalent to direct 
enumeration 

 Expected Marginal Cost  
    $ 49  / MWH 
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Modeling Forced Outage Rates 

 
 Direct Enumeration Method (Calebrese) 

 
 Probabilistic Simulation: Convolution Method 

 
 Monte Carlo Method 
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Monte Carlo Method 

 Estimate probability function of random variables; e.g. 
Forced Outage Rate of Each Unit  
 

 Simulate the system by using a random number generator 
to produce a sample from the probability functions 
(simulate generating unit forced outages) 
 

 Process is repeated a large number of times  
(typically dozens to hundreds of draws) 
 

 Results from all draws are averaged together 
 

 Average approaches the expected value as the number of 
draws (sample size) increases 
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Monte Carlo Method:  Example 

 Suppose twenty draws were taken as follows from the 8 possible combinations: 
 1, 3, 4, 1, 1, 1, 5, 1, 1, 5, 6, 1, 1, 2, 1, 7, 1, 3, 1, 1 
 Frequency for each outcome: 
  
  
 

 Outcome Frequency Unit A Unit B Unit C
0 0 N N N
1 12 Y Y Y
2 1 Y N N
3 2 Y N Y
4 1 N Y N
5 2 N Y Y
6 1 N N Y
7 1 Y Y N

Total 20

State
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Monte Carlo Method:  Example 

 Estimate the expected values by the direct average of results “Expected” Generation of: 
 

 Unit A= [(0x0) + (12x400)+ (1x400)+ (2x400)+ (1x0)     +(2x0)     +(1x0)   +(1x400)] / 20 = 320 
 

 Unit B= [(0x0) + (12x240)+ (1x0)    + (2x0)    + (1x350) +(2x350) +(1x0)   +(1x240)] / 20 = 208.5 
 

 Unit C= [(0x0) + (12x0)    + (1x0)    + (2x75)  + (1x0)     +(2x75)   +(1x75) +(1x0)    ] / 20 = 18.75 
 
 

10 25 60 100

400 350 75
Expected

Outcome Freq Unit A Unit B Unit C Unit A Unit B Unit C Emerg Engy Cost $ Unit A Unit B Unit C Uns.Energy
0 0 N N N 0 0 0 640 64,000$   0 0 0 0
1 12 Y Y Y 400 240 0 0 10,000$   4800 2880 0 0
2 1 Y N N 400 0 0 240 28,000$   400 0 0 240
3 2 Y N Y 400 0 75 165 25,000$   800 0 150 330
4 1 N Y N 0 350 0 290 37,750$   0 350 0 290
5 2 N Y Y 0 350 75 215 34,750$   0 700 150 430
6 1 N N Y 0 0 75 565 61,000$   0 0 75 565
7 1 Y Y N 400 240 0 0 10,000$   400 240 0 0

Total 20 6400 4170 375 1855
320 208.5 18.75 92.75

Capacity MW

Generation Mwh

Cost $/Mwh

State

Load = 640 MW

Expected Generation
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Monte Carlo Method:  Example 

  “Expected” Production Cost =  
 [(0x64,000)] +(12x10,000) + (1x28,000) + (2x25,000) + (1x37,500) + (2x34,750) + (1x10,000)  (1x61,000)] / 20 

= $18,812.50 
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Dispatch 

Unit A 320.0 320.0 320.0 
Unit B 222.7  222.7  208.5 
Unit C 22.8  22.8  18.75 
Unsupplied 74.5  74.5  92.75 
 
Cost ($)    17,585.5 17,585.5              18,812.5 
    
($/MWH)  
Average Cost            27.48                  27.48                   29.39 
Exp.Marginal Cost  49.00                  49.00                   51.25 
 

Enumeration 
Method 

Convolution 
Method 

Monte 
Car lo 

Modeling Forced Outage Rates - 
Comparison of Results 
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Modeling Forced Outage Rates - 
Comparison Modeling Techniques 

 Enumeration is computationally intensive and 
considered not feasible as load changes hourly 
and systems generally have many more units 

 

 Convolution is mathematically equivalent to 
enumeration without the computational burden 

 

 Monte Carlo’s deterministic algorithm benefits 
some commitment and dispatch applications, but 
it requires iteration for convergence 
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Load Representations 

 All Production Cost models must represent the load to be 
served: 
 Customer load (utility sales) 

 Energy 
 Peak demand 
 Time series consumption data 

 Hourly 8760 covering the entire year 
 Typical Weeks (168 hours per month) 
 Aggregations of hours by time bucket or sub-period within the 

week or month 
 Losses 

 Transmission & Distribution 
 Can vary by customer class 

 Customer Load + Losses = Generation Requirements 
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Glossing over… 

 Differences in how specific models handle: 
 Bilateral Transactions 
 Market Energy and Capacity Purchases 
 Hydro & Energy Storage Resources 
 Transmission & Distribution 
 Distributed Generation 
 Etc. 
 Etc. 
 Etc. 
 DSM… 



©2013 Ventyx, An ABB Company   32 

Optimization  

 Optimization models seek the optimal solution for a system 
 With one or more objective functions: 

 Minimize revenue requirements 
 Minimize societal cost 
 Maximize shareholder benefit 

 Subject to constraints 
 Reserve Margins 
 Unit X is not available for construction until xx/xx/20xx 
 Unit X and Unit Z are not allowed to occur simultaneously 
 No more than 3 Unit Y’s may be built over the time horizon 
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Resource Optimization 

 Optimization models evaluate the key cost components of 
new generation:  Cost of construction, Cost of production, 
Cost (or Benefit) of Market Interaction, etc. 
 Models require an imbedded production cost model 
 Models require a capital expenditures model 

 Optimization Methods 
 Dynamic Programming (DP) Solutions 
 Linear Programming (LP) Solutions 
 Mixed Integer Programming Solutions (MIPS) 
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Dynamic Programming (DP) Solutions 

 Dynamic programming generates possible solutions (states) in 
each year that satisfy the optimization problem’s constraints 

 Iterates forward generating each year’s states based on all the 
states that passed in the previous year 

 All possible combinations are explored 
 Only those combinations that meet all constraints are saved 
 Pathways that reach the same state in any one year are 

converged and only the least expensive pathway is saved 
(Bellman’s Principle of optimality) 

 Possible to generate an optimization problem that it is 
infeasible to solve with available computing resources 

 Each additional prototype option adds to the size of the 
solution set, and to runtime 
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Dynamic Programming (DP) Solutions 

 At the end of the time horizon the paths are traced backward 
to determine the timing of resource additions. 

 End Effects analysis may be performed 
 This methodology yields multiple plans 
 Plans are then sorted in rank order on the Objective Function 

 
 This method is called Forward Propagation – Back Trace 
 It is theoretically possible to do Back Propagation 

 This would be computationally more efficient 
 This has only been demonstrated in simplified models 
 The number of variables in models with sufficient detail to be 

reasonably accurate for real systems makes this infeasible in 
practice 
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Linear Programming (LP) Solutions 

 Uses a mathematical method that solves for all years and all 
possible combinations of prototype resources simultaneously 

 The result can put in “partial” units 
 Yields only a single “optimal” answer 
 That answer is only “optimal” for the specific set of 

assumptions 
 Must change the optimization problem’s constraints and/or 

assumptions to generate “sub-optimal” answers  
 The result can be considered a representation of the optimal 

mix of resources from among the prototypes offered 
 More efficient (than DP) when used with stochastic 

uncertainty modeling (Risk Analysis) 
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Mixed Integer Programming Solution 

 Uses same mathematical methods as LP, but requires that 
“whole” units be added 

 Yields a solution that represents a potential “real” future 
resource plan 
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Why does this matter? 

 Theoretically, optimal is optimal no matter how you get 
there 

 In practice, resource optimization models may yield slightly 
different optimization results  

 This depends on: 
 The underlying production cost engines 
 The problem constrains available/employed 
 The level of detail in the models 

 Convolution methods preferred to Monte Carlo 
 Simplified hourly representations of the load and dispatch 

generally used (i.e. – Typical Week, Time Block Aggregation) 
 Need to run detailed models to fully capture operational 

details and interactions 
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DSM Modeling 

 DSM in integrated resource planning models  
 Ways to include DSM 
 Associated pros and cons. 

 Costs 
 Impacts Analysis 
 Hourly Impact Shapes 
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Incorporating DSM in Production Cost Models 

 Subtract it from the load before running the production costs 
 Advantages: simple and can be done with spreadsheets 
 Disadvantages:  

 Have to assume how much DSM there is beforehand 
 Assessment of individual programs possible but hard 
 No direct capture of associated costs 

 Roll all the DSM together and represent as a single purchase 
transaction 
 Pros:  

 Again it’s pretty straightforward and most of the work is done off-
line in spreadsheets 

 You can capture the costs in aggregate 
 Cons: Same as fist two “Disadvantages” above 
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Incorporating DSM in Production Cost Models 

 Model DSM as a Load Modifying Resource 
 In aggregate including costs… 
 Individual programs 

 Pros: 
 Much more detail on individual program impacts and costs 
 Can turn programs on & off to assess individual impacts 

 Cons: 
 Need more detailed data on each program, so data maintenance 

burden goes up 
 Sometimes that additional detail results in inconsistencies 

 The better resource planning models allow modeling of 
individual resources 
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DSM Costs 

 Utility Company Costs 
 Program operation/administration costs 
 Marketing/advertising costs 
 Implementation costs 
 Verification and measurement costs 
 Customer sign up costs 
 Incentives 

 Customer Costs 
 Equipment 
 Operating Costs 
 Maintenance Costs 
 Fuel Costs 

 Externality and Societal Costs 
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DSM Costs 

 The more detail you have on costs the more refined your 
cost/benefit modeling can be 

 Supports all the California Standard Practice Manual B/C Tests 
 The more “slots” you have for the various costs the more 

separated you can keep them in the model – ease of tracking 
inputs 

 But that can lead to modeling inconsistencies between 
programs – the modeler has to be focused and disciplined 
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DSM Impacts 

 Energy Savings 
 Annual 
 Monthly 

 Peak Demand Savings 
 Program Peak 
 Coincident Peak 

 Hourly Load Impact Shapes 
 8760 Hours 
 Model Granularity 
 Diversified vs. Undiversified 
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Going Back to the Question of Hourly Load Shapes 

 Production costing models all need a representation of the 
pattern of customer demands, as well as forecasts of their 
energy consumption and peak demand 

 Why?  Because depending on the model’s level of detail: 
 All of them need to “stack” the resources to serve the load 
 Some models do everything on an hourly basis (Hourly Monte 

Carlo) 
 Others use Typical Weeks to represent the load for the dispatch 

period 
 Still others use hour “buckets” to simplify the dispatch 
 Sub-periods: Weekday, Weeknight, Weekend 
 Hour to hour load differences drive the way units are 

committed – regardless of the underlying load representation 
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The Issue with DSM Impact Shapes 

 For production cost models diversified hourly customer load 
shapes are assumed 

 By definition any measurement of load at an aggregated level 
is “diversified” 

 What is “diversified load?” 
 Represents an average across a large number of customers 
 Some individual customers will be “on” more than others in any 

given hour due to equipment cycling (e.g. – AC) 
 Engineering estimates generally represent “undiversified” load 

 No variance from customer to customer in hour to hour usage 
 You can’t just multiply by the number of customers! 
 Results in an overestimation of impact at peak 
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Diversified Impacts vs. Undiversified Impacts 

 DSM analysis models frequently use an hourly impact 
representation called “T36” 
 Typical Days – the “T” part 
 Each month in the year represented by a typical weekday, and 

typical peak day, and a typical weekend day – 3 day types times 
12 months = the “36” part 

 Day types are strung together to get 8760 shapes – usually the 
weekdays and weekend days to estimate overall energy savings 

 The peak day shape is adjusted for diversity to correct for 
overestimation by simple multiplication 

 The problem: really only three days types 
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Why is this an Issue for Resource Planning Models? 

 Resource additions are driven (mostly) by capacity reserve 
needs 

 This is measured at the time of the peak 
 If the impact of the DSM at the time of system peak are 

wrong this results in an incorrect estimate of capacity need 
 The weekday + weekend day doesn’t capture the peak day so 

it needs to be overlain on the correct day 
 But the Diversity Adjustment applied suppresses its hourly 

impacts 
 Sometimes the resulting “Peak Day” impacts are less than 

comparable hours from the Weekday! 
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Worse yet… 

 The hourly impacts for Weekdays and Weekend Days are the 
undiversified load shapes “grossed up” for the number of 
participants 

 So the hourly impacts may be under or overstated depending 
on the error vs. a diversified hourly impacts shape 

 Again; this can have profound and potentially detrimental 
impacts on the dispatch of the system’s resources against the 
remaining load after DSM is applied 

 So the costs calculated from that dispatch can be wrong too 
 This can either overestimate the costs and/or savings from a 

program, or underestimate them 
 There is no way to know for sure if you have it right unless the 

underlying load shapes are all based on Diversified shapes  
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Finally 

 Incorrect hourly impact shapes can cause even more error in 
models that can capture Time of Use and Block  Rate 
Structures 

 This is also true for hourly dispatch models 
 Error is less for aggregated load models, but these are less 

accurate to begin with 
 Models with load precision somewhere in the middle will 

have less error – but the error didn’t go away completely. 
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Eric Hughes 
Vice President 
Ventyx Advisors 
678-830-1049 
eric.hughes@ventyx.abb.com 
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